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Abstract
Gauss in 1812, in his celebrated memoir on the hypergeometric series, presented
a remarkable formula for the psi (or digamma) function, ψ(z), at rational
arguments z, which can be expressed in terms of elementary functions. Davis
in 1935 extended Gauss’s result to the polygamma functions ψ(n)(z)(n ∈ N) by
using a known series representation of ψ(n)(z) in an elementary yet technical
way. Kölbig in 1996, in his CERN technical report, also gave two extensions
to ψ(n)(z) by using the series definition of polylogarithm function and the
above-known series representation. Here we aim at deriving general formulae
expressing ψ(n)(z) (n ∈ N0) as rational arguments in terms of other functions,
which will be obtained in two ways. In addition, several special cases are also
considered and, as a by-product of our main results, we derive, in a simple
and unified manner, all formulae given by Gauss, Davis and Kölbig. Finally, it
should be noted that all our results, in view of the relationship between ψ(n)(z)

and the Hurwitz zeta function, ζ(s, a), could be rewritten in the representation
of ζ(s, a).

PACS numbers: 02.30.Gp, 02.30.Lt
Mathematics Subject Classification: 11M06, 11M35, 33B15, 11B68, 11B73,
11M36, 33B30

1. Introduction and preliminaries

The polygamma functions ψ(m)(z) of order m,m ∈ N0, are defined by (see [1, p 260, equations
(6.4.1) and (6.4.10)], [5, p 644, equation (10.(44a))] and [24, p 22, equation (52)])

ψ(0) := ψ(z), ψ(n)(z) :=
⎧⎨
⎩

dn

dzn
ψ(z)

(−1)n+1n!ζ(n + 1, z)

(n ∈ N := {1, 2, 3, . . .}; N0 := N ∪ {0}; z �∈ Z
−
0 := {0,−1,−2, . . .}), (1.1)
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where ψ(z) and ζ(s, a) are, respectively, the psi (or digamma) function, given as the
logarithmic derivative of the familiar Gamma function �(z), ψ(z) = d log �(z)/dz =
�′(z)/�(z) (see [1, p 258, equation 6.3.(1)], [4, p 13] and [24, p 13, equation (1)]), and
the generalized (or Hurwitz) zeta function defined by [24, p 88, equation (1)]

ζ(s, a) :=
∞∑

k=0

(k + a)−s (Re(s) > 1; a �∈ Z
−
0 ). (1.2)

Kirchoff was first to apply the polygamma functions in physics, and summation of rational
series and evaluation of integrals are some of their classical applications that are still relevant
(see, for instance, [8, 15]). They, together with related ζ(s, a), constantly find new use,
and further development of their theory is needed [12]. Recently, for example, the need
for summation of series containing ψ(n)(z) has arisen in various fields, Feynman diagram
calculations being best known [9, 20].

Gauss [14, pp 33–34 or pp 155–156 in Werke] in 1812 proved that ψ(z), for rational
arguments, can be expressed in terms of elementary functions as follows (see [24, p 19,
equation (47)]):

ψ

(
p

q

)
= −γ − π

2
cot

pπ

q
− log q +

q−1∑
k=1

cos

(
k2πp

q

)
log

(
2 sin

kπ

q

)

(1 � p < q;p, q ∈ N), (1.3)

where γ denotes the Euler–Mascheroni constant (see [24, pp 4–6]).
It is noted that most known formulae involving ψ(z) and ψ(n)(z) can be easily derived

from their definitions and known formulae, except for (1.3). Gauss’s proof of (1.3) was
later clarified and much simplified by Jensen [16, pp 52–54, or, pp 144–146 (Engl. Transl.)]
(cf [4, pp 13–15] and [21, pp 20–23]). There are other proofs of (1.3) (see [6, 17], [13,
equation (1.7.3)] or [24, pp 18–19]).

Davis [11] extended the Gauss’s theorem to the polygamma function by starting with the
series representation of ψ(n)(z) (see equations (1.1) and (1.2)) in an elementary yet a rather
technical way. Kölbig [17, pp 4–5, theorem 2 and p 7, theorem 3] presented two formulae
for the ψ(n)(p/q) by using the series definition of polylogarithm function in (1.7) and the
aforementioned series for ψ(n)(z).

Here we aim at deriving general formulae expressing ψ(n)(z) (n ∈ N0) at rational
arguments in terms of other functions, such as the Hurwitz zeta function, Bernoulli polynomials
and Clausen functions, which will be obtained in two ways: one is to use an integral
representation of ψ(n)(z) (modified the method given in [24, pp 18–19] or [13, equation
(1.7.3)]); the other one, inspired by Jensen [16], is to apply Simpson’s series multisection
formula (see (2.8)) to the polylogarithm function. As a by-product of proving our main
results, we also derive, in a simple and unified manner, all formulae given by Gauss, Davis
and Kölbig (see remarks 2 and 3).

For our purpose we introduce the following functions. The Riemann zeta function ζ(s) is
defined as ζ(s) := ζ(s, 1). The Bernoulli polynomials Bn(x) and Bernoulli numbers Bn are,
respectively, defined by [1, p 804, equation (23).1.(1)]

t etx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t | < 2π) and Bn := Bn(0). (1.4)
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The associated and generalized Clausen function of order n, Gln(θ) and Cln(θ), are,
respectively, defined by [19, p 282, entry A.1(8)]

Gln(θ) :=
∞∑

k=1

cos kθ

kn
(n is even) and Gln(θ) :=

∞∑
k=1

sin kθ

kn
(n is odd),

(1.5)

and [19, p 281, entry A.1(3)]

Cln(θ) :=
∞∑

k=1

sin kθ

kn
(n is even) and Cln(θ) :=

∞∑
k=1

cos kθ

kn
(n is odd).

(1.6)

The polylogarithm function Liν(z) is defined by [19, p 282, entry A.2.7(1)]

Liν(z) :=
∞∑

k=1

zk

kν

(Re(ν) > 0, |z| � 1, z �= 1; Re(ν) > 1, |z| � 1). (1.7)

When n = 1, the series in (1.7) defines Li1(z) = −log(1 − z).

2. Main results and their proofs

We begin by stating the theorem:

Theorem 1. If p and q are positive integers, then, in terms of the associated Clausen functions
Gln(z) and the generalized Clausen functions Cln(z), we have

ψ(n)(p/q)

ψ(n)(p/q)

}
= ±n!qn

q∑
s=1

[
Gln+1(s2π/q)

{
cos(s2πp/q)

sin(s2πp/q)

}

+ Cln+1(s2π/q)

{
sin(s2πp/q)

cos(s2πp/q)

} ]
(1 � p � q) (2.1)

and

ψ(p/q) = −γ − log q −
q−1∑
s=1

[Gl1(s2π/q) sin(s2πp/q)

+ Cl1(s2π/q) cos(s2πp/q)] (1 � p < q), (2.2)

where, for m ∈ N, the upper ψ(n)(p/q) on the left-hand side of (2.1) corresponds to the case
n = 2m − 1 and the lower ψ(n)(p/q) corresponds to the case n = 2m.

Remark 1. We remark that (2.2) is equivalent to the Gauss digamma theorem (1.3). Indeed,
this equivalence readily follows since Cl1(θ) = − log [2 sin (θ/2)] (see [22, p 726, entry
5.4.2 (10)]) and the sum involving Gl1(θ) = θ − 1/2 (cf [22, p 726, entry 5.4.2 (5)]) equals
− 1

2 cot(πp/q) which can be easily proved by using summation formulae for sine and cosine
functions (see [24, p 19, equations (45) and (46)]).

Proof (an integral representation). We recall a known integral representation of ψ(z) (see
[24, p 15, equation (13)]):

ψ(z) = −γ +
∫ 1

0

(
1 − t z−1

)
(1 − t)−1 dt (Re(z) > 0), (2.3)
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which, upon differentiating n times, yields an integral representation of ψ(n)(z):

ψ(n)(z) =
∫ 1

0

(log t)ntz−1

t − 1
dt (n ∈ N; Re(z) > 0). (2.4)

Taking z = p

q
(1 � p � q;p, q ∈ N) and t = xq in (2.4), we obtain

ψ(n)

(
p

q

)
= qn+1

∫ 1

0

(log x)nxp−1

xq − 1
dx. (2.5)

Letting ω := e2π i/q(i = √−1; q ∈ N) and decomposing the integrand of (2.5) into a partial
fraction, we get

ψ(n)

(
p

q

)
= qn

q−1∑
	=0

ω	p

∫ 1

0

(log x)n

x − ω	
dx

= −qn

q−1∑
	=0

ω	p

∞∑
j=0

1

ω	(j+1)

∫ 1

0
(log x)nxj dx,

which, upon using the following known result (see [22, p 488, entry 2.6.3(2)]):∫ 1

0
xj (log x)k dx = (−1)k�(k + 1)

(j + 1)k+1
(k + 1 > 0; j + 1 > 0)

yields

ψ(n)

(
p

q

)
= (−1)n+1n!qn

q−1∑
	=0

ω	p

∞∑
j=1

1

jn+1ω	j
(1 � p � q;p, q, n ∈ N). (2.6)

Separating (2.6) into real and imaginary parts and considering ψ(n)
(

p

q

)
in (2.6) is real, we

obtain

ψ(n)

(
p

q

)
= (−1)n+1n!qn

×
q−1∑
	=0

⎧⎨
⎩cos

(
2π	p

q

) ∞∑
j=1

cos
(

2π	
q

j
)

jn+1
+ sin

(
2π	p

q

) ∞∑
j=1

sin
(

2π	
q

j
)

jn+1

⎫⎬
⎭

(1 � p � q;p, q, n ∈ N). (2.7)

Finally, setting n = 2m − 1 and n = 2m(m ∈ N) in (2.7), together with (1.5) and (1.6),
gives (2.1).

Similarly, starting from (2.3), the formula (1.3) can be obtained and, for details, we refer
the reader to [24, pp 18–19]. Thus, from (1.3) by remark 2 we have (2.2). �
Proof (an application of Simpson’s series multisection formula). We begin by recalling
Simpson’s series multisection formula (see, for instance, [23, p 131]):

If 
(x) = ∑∞
k=1 akx

k and let q be fixed, then, for any p

q

∞∑
k=0

ap+qkx
p+qk =

q∑
s=1



(
ωsx

)
ω−sp

(
1 � p � q;p, q ∈ N;ω = e2π i/q

)
. (2.8)

Now, by making use of Simson’s formula and Abel’s theorem (see [7, p 148]) we show
that the following formulae hold for ω = e2π i/q ,

ψ(n)

(
p

q

)
= (−1)n+1n!qn

q∑
s=1

[
cos

(
s2πp

q

)
Re( Lin+1(ω

s))

+ sin

(
s2πp

q

)
Im( Lin+1(ω

s))

]
(1 � p � q;p, q, n ∈ N) (2.9)
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and

ψ

(
p

q

)
= −γ − log q −

q−1∑
s=1

[
cos

(
s2πp

q

)
Re( Li1(ω

s))

+ sin

(
s2πp

q

)
Im( Li1(ω

s))

]
(1 � p < q;p, q ∈ N). (2.10)

In order to prove (2.9) we apply Simson’s formula (2.8) to the polylogarithm function
(1.7) and obtain

∞∑
k=0

xp+qkq

(p + qk)ν
=

q∑
s=1

ω−sp Liν(ω
sx) (Re(ν) > 1),

which, upon taking the limit as x → 1 and using Abel’s theorem, leads to

ζ

(
ν,

p

q

)
= qν−1

q∑
s=1

ω−sp Liν(ω
s) (Re(ν) > 1), (2.11)

with ζ(s, a) being the Hurwitz zeta function given in (1.2). Here we assume that ν is real with
ν > 1. Separating the right-hand side of (2.11) into real and imaginary parts and considering
ζ(ν, p/q) is real, we get

ζ

(
ν,

p

q

)
= qν−1

q∑
s=1

[
cos

(
s2πp

q

)
Re( Liν(ω

s)) + sin

(
s2πp

q

)
Im( Liν(ω

s))

]
,

which, upon setting ν = n + 1 and in view of the relationship between ψ(n)(z) and ζ(s, a)

(1.1), becomes (2.9).
In order to prove (2.10), we recall a well-known formula (see [1, p 259, equation (6.3.16)]):

ψ(z) = −γ +
∞∑

k=0

(
1

1 + k
− 1

z + k

)
,

which, upon setting z = p

q
and using Abel’s theorem, yields

ψ

(
p

q

)
= −γ + lim

x→1−

∞∑
k=0

(
xp+qk

1 + k
− xp+qkq

p + qk

)
:= −γ + lim

x→1−
S(x). (2.12)

If we apply Simson’s formula (2.8) to Li1(x) = − log(1 − x), we obtain

∞∑
k=0

xp+qkq

p + qk
=

q∑
s=1

ω−sp Li1(ω
sx) = − log(1 − x) +

q−1∑
s=1

ω−sp Li1(ω
sx). (2.13)

Next, for |x| < 1, we use (2.13) to get

S(x) = −xp−q log(1 − xq) + log(1 − x) −
q−1∑
s=1

ω−sp Li1(ω
sx)

= −xp−q log
1 − xq

1 − x
+

(
1 − xp−q

)
log(1 − x) −

q−1∑
s=1

ω−sp Li1(ω
sx),

and by making use of Abel’s theorem, we arrive at

lim
x→1−

S(x) = − log q −
q−1∑
s=1

ω−sp Li1(ω
s). (2.14)



15024 J Choi and D Cvijović

Now, it follows from (2.12) and (2.14) that

ψ

(
p

q

)
= −γ − log q −

q−1∑
s=1

ω−sp Li1(ω
s),

which, similarly as in verifying (2.9), proves (2.10).
Finally, having in mind (1.5) and (1.6) and applying to (2.9), for n ∈ N, the following

relations:

Li2n(e
iθ ) = Gl2n(θ) + i Cl2n(θ)

and

Li2n−1(e
iθ ) = Cl2n−1(θ) + i Gl2n−1(θ)

we prove (2.1). Likewise, the formula (2.2) is obtained by considering (2.10). �

Theorem 2. If p and q are positive integers, then, in terms of the Bernoulli polynomials Bn(x)

and the generalized Clausen functions Cln(z), we have

ψ(n)(p/q)

ψ(n)(p/q)

}
= n!qn

[
(−1)�n/2	(2π)n+1

2(n + 1)!

q∑
s=1

Bn+1(s/q)

{
cos(s2πp/q)

sin(s2πp/q)

}

±
q∑

s=1

Cln+1(s2π/q)

{
sin(s2πp/q)

cos(s2πp/q)

}] ({
n = 2m − 1

n = 2m

}
;m ∈ N; 1 � p � q

)

(2.15)

and

ψ(p/q) = −γ − log q + π

q−1∑
s=1

B1(s/q) sin(2sπsp/q)

−
q−1∑
s=1

Cl1(2πs/q) cos (2sπsp/q) (1 � p < q). (2.16)

Proof. By using the Fourier series of the Bernoulli polynomials Bn(x) (see, e.g., [1, p 805,
equation (23.1.16)], [19, p 202, equation (7.60)], [24, p 119, equation (109)]), we get a known
formula

Gln(2πx) = (−1)1+�n/2	(2π)n
Bn(x)

2n!
(0 � x � 1; n ∈ N \ {1}), (2.17)

which also holds true when n = 1 if 0 < x < 1. Note that (2.17) can also be proved
by a result of Adamchik [2, equation (9)]. The proof of theorem 2 will now follow from
theorem 1, since, respectively, in view of (2.17), the formulae (2.15) and (2.16) follow from
(2.1) and (2.2). �

Corollary 1 (Kölbig [17, pp 4–5, theorem 2]). If n, p and q are positive integers, 1 � p < q,

then, in terms of the derivatives of the cotangent function and the generalized Clausen functions
Cln(z), we have

ψ(2n−1) (p/q) = −π

2

d2n−1

dθ2n−1
cot(πθ)

∣∣∣∣
θ=p/q

+
q∑

s=1

sin(s2πp/q) Cl2n(2πs/q), (2.18)

ψ(2n) (p/q) = −π

2

d2n

dθ2n
cot(πθ)

∣∣∣∣
θ=p/q

−
q∑

s=1

cos(s2πp/q) Cl2n+1(2πs/q). (2.19)
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Proof. By combining a known formula for ψ(n)(z) (see [24, p 22, equation (55)])

ψ(n)(z) − (−1)nψ(n)(1 − z) = −π
dn

dzn
{cot πz} (n ∈ N0; 0 < |z| < 1)

and ψ(n) (p/q) ± ψ(n) (1 − p/q) that is computed from (2.15), we get the following:

d2n−1

dθ2n−1
cot(πθ)

∣∣
x=p/q = (−1)n

(2πq)2n−1

n

q∑
s=1

B2n(s/q) cos(s2πp/q), (2.20)

d2n

dθ2n
cot(πθ)

∣∣
x=p/q = (−1)n−1 2(2πq)2n

2n + 1

q∑
s=1

B2n+1(s/q) sin(s2πp/q),

(n, p, q ∈ N; 1 � p < q). (2.21)

Now, the assertions follow by theorem 2 together with (2.20) and (2.21). �

Corollary 2 [Kölbig [17, p 7, theorem 3]]. If p and q are positive integers, 1 � p < q, then,
in terms of the Bernoulli numbers Bn and the generalized Clausen functions Cln(z), we have

ψ(n)(p/q)

ψ(n)(p/q)

}
= ±n!qn

[
Qn

p,q ∓ (−1)�(n+1)/2	
(

π

q

)n+1 �(q−1)/2	∑
s=1

{
cos(s2πp/q)

sin(s2πp/q)

}

×
�(n+1)/2	∑

l=0

(−1)lq2l

(n + 1 − 2l)!

∣∣22l − 2
∣∣ |B2l|
(2l)!

(q − 2s)n+1−2l

+ 2
�(q−1)/2	∑

s=1

Cln+1(s2π/q)

{
sin(s2πp/q)

cos(s2πp/q)

}] ({
n = 2m − 1

n = 2m

}
;m ∈ N

)
,

(2.22)

where

Qn
p,q = (

1 + 1
2 (−1)p(1 + (−1)q)(2−n − 1)

)
ζ(n + 1).

Proof. By making use of a well-known formula for Bn(x) [24, p 59, equation (3)], which
could be rewritten in the form

Bn(x) =
n∑

k=0

(
n

2k

)
Bkx

n−k = −1

2
xn−1 +

�(n+1)/2	∑
k=0

(
n

2k

)
B2kx

n−2k,

since B1 = −1/2 and B2k+1 = 0, k ∈ N, we, by theorem 2, after much tedious algebra, obtain
the Kölbig formulae in (2.22). �

Remark 2. In view of (1.1) it is clear that all the above results could be rewritten in the
representation of the ζ(s, a). Moreover, we also establish a new identity for ψ(n)(z), given by
theorem 3, which, for any fixed n and q, involves all q values of ψ(n)(p/q) (p = 1, . . . , q).

Remark 3. Observe that the both Kölbig extensions of the Gauss digamma theorem, given,
respectively, by (2.18) together with (2.19) and by (2.22), follow without difficulty from
theorem 2. It should be however noted that the first assertion of theorem 2, which we have
been unable to find in the literature, resembles the formula proved by Kölbig (see corollary 2).
Obviously, our formula (2.15) is much simpler and more compact than (2.22) and involves
the Bernoulli polynomials instead of the Bernoulli numbers. Further, note that Davis
[11] deduced two separate formulae for ψ(n)(p/q) ± ψ(n)(1 − p/q) which, upon adding,
yields (2.7).
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Theorem 3. If p and q are positive integers, 1 � p � q, then, in terms of the Bernoulli
polynomials Bn(x) and the generalized zeta function ζ(s, a), the following identity holds:

ψ(n)(p/q)

ψ(n)(p/q)

}
= n!qn

q∑
s=1

[
(−1)�n/2	(2π)n+1

2(n + 1)!
Bn+1 (s/q)

{
cos(s2πp/q)

sin(s2πp/q)

}

± 1

qn+1

(
q∑

r=1

ζ (n + 1, r/q)

{
sin(r2πs/q)

cos(r2πs/q)

})
·
{

sin(s2πp/q)

cos(s2πp/q)

}]
, (2.23)

where, for m ∈ N, the upper ψ(n)(p/q) on the left-hand side of (2.23) corresponds to the case
n = 2m − 1 and the lower ψ(n)(p/q) corresponds to the case n = 2m.

Proof. Cvijović and Klinowski [10, equation (10a)] proved formulae which can be specialized
in the following form:

Cln

(
2πp

q

)
= 1

qn

q∑
s=1

ζ

(
n,

s

q

) {
cos(s2πp/q)

sin(s2πp/q)

} ({
n = 2m + 1

n = 2m

})

(n, q ∈ N;p ∈ Z := N ∪ Z
−
0 ). (2.24)

Evidently, by theorem 2 and (2.24) we have (2.23). �

3. Special cases

In conclusion, in order to demonstrate an application of the presented results, some special
cases of our formulae for the polygamma functions at rational arguments are recorded here (cf
[3] and [18]). Since the values of ψ(n)(p/q) are expressed in terms of the Clausen functions,
Bernoulli polynomials and Hurwitz zeta function, it is natural to know some of their properties
such as

B2n

(
1

2

)
= (

21−2n − 1
)
B2n (n ∈ N);

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n (n ∈ N0);

and

ζ(s) = 1

ms − 1

m−1∑
j=1

ζ

(
s,

j

m

)
(m ∈ N \ {1}).

We also need the relations

ψ(2n)

(
1

6

)
= 2ψ(2n)

(
1

3

)
(n ∈ N)

and

ψ(2n)

(
5

6

)
= −2ψ(2n)

(
1

3

)
− ψ(2n)

(
1

2

)
(n ∈ N),

which are easily obtained by recalling the multiplication formula for ψ(n)(z):

ψ(n) (mz) =
m∑

j=1

ψ(n)

(
z +

j − 1

m

)
(n,m ∈ N).

Now, we give the value of the simple case of (2.15) when p = 1 and q = 2:

ψ(n)

(
1

2

)
= (−1)n+1n!

(
2n+1 − 1

)
ζ(n + 1) (n ∈ N), (3.1)
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which is a well-known formula given, for instance, in [1, p 260, equation (6.4.(4))]. Similarly,
we have

ψ(2n)

(
1

3

)
= −ψ(2n)

(
2

3

)
= (2n)!

2
(1 − 32n+1)ζ(2n + 1)

+ (−1)n

√
3(2π)2n+1

6(2n + 1)

⎧⎨
⎩−6n + 1

2
+

n∑
j=1

(
2n + 1

2j

)
B2j 32j

⎫⎬
⎭ (n ∈ N), (3.2)

and

ψ(2n)

(
1

4

)
= ψ(2n)

(
1

2

)
− ψ(2n)

(
3

4

)

= (2n)!22n(1 − 22n+1)ζ(2n + 1) + (−1)n+1 (4n + 1)(2π)2n+1

4(2n + 1)

+ (−1)n
(2π)2n+1

4(2n + 1)

n∑
j=1

(
2n + 1

2j

)
B2j 42j (n ∈ N). (3.3)

Finally, several further special values are

ψ(2n−1)

(
1

4

)
= (2n − 1)!24n−1β(2n) + (−1)n−122n−2(22n − 1)B2n

(2π)2n

2n
(3.4)

ψ(2n−1)

(
3

4

)
= −(2n − 1)!24n−1β(2n) + (−1)n−122n−2(22n − 1)B2n

(2π)2n

2n
, (3.5)

where β(s) := (ζ(s, 1/4) − ζ(s, 1/4)) /4s .
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